MISCELLANEOUS FIELD STUDIES MAP MF-1604-A

Pre-Ravalli rocks

ALTYN FORMATION (MIDDLE PROTEROZOIC) --Consists of buff, light-gray, darkgray, and orange dolomite, argillaceous dolomite, and stromatolitic limestone; contains a few thin beds of reddish argillite. Upper part is thin bedded, argillaceous, and forms recessive slopes. Middle part contains thick, resistant beds that form prominent cliffs. Carbonate rocks contain abundant, coarse, subangular to subrounded clastic debris of quartz and feldspar. Crops out near east shore of Waterton Lake in northeastern part of mapped area. Base is not exposed, and only uppermost 200 m of Altyn is in mapped area. Formation inferred to grade westward into rocks of upper part of Prichard(?) Formation

PRICHARD(?) FORMATION (MIDDLE PROTEROZOIC) --Consists mostly of laminated to thinbedded, black and light-gray argillite, argillitic siltite, and siltite. Outcrops are characteristically rusty from oxidation of iron sulfide minerals in the rocks. Thin beds of calcareous and dolomitic silty argillite and siltite are interlaminated with noncalcareous argillite and siltite over a 600-meter interval near top of formation. In lower part of this interval, silty argillite contains coarse detrital quartz, feldspar, and calcite. Crops out along stream valleys on west side of Livingston Range and along McDonald Creek. Also occurs in klippen on high parts of Dutch Ridge in south-central part of mapped area. Base of formation is not exposed. Thickest section in mapped area, about 850 m, extends from McDonald Creek to near top of Stanton

GEOLOGIC SETTING

to dark-gray argillaceous dolomite, gray limestone and, in lower part,

SHEPARD FORMATION (MIDDLE PROTEROZOIC) --

Contains numerous thin beds of

northwest

Consists of yellowish-gray to greenish-

gray dolomitic argillite and siltite

and contains lesser amounts of pale-

green argillite, light-gray quartzite,

calcarenite, limestone, and dolomite.

stromatolités, particularly in southern

outcrops. Crops out in northern and

eastern parts of mapped area. Thins

northwesterly from about 350 m near

Flattop Mountain to about 150 m in

SNOWSLIP FORMATION (MIDDLE PROTEROZOIC) -- In

southern part of area, upper part of

formation is mostly green argillite and

siltite, in part dolomitic. Also con-

tains greenish-gray quartzite and thin

beds of gray limestone; some are stro-

upper part, called Purcell Lava by Daly

(1912) and Purcell Basalt by Wilmarth

(1938) and shown on map as Yb, is as

contains green to red beds of argil-

lite, siltite, and quartzite which are

underlain in turn by green dolomitic

beds of argillite and siltite. Lower

part of formation consists of inter-

locally dolomitic. Formation is

exposed throughout eastern half of

about 360 m near Hole-in-the-Wall.

Middle Belt carbonate

HELENA FORMATION (MIDDLE PROTEROZOIC) --

mapped area. Thins toward northwest

from about 460 m near Mount Cannon to

Latter thickness includes pillow basalt

Consists of thin to thick beds of gray

calcarenite and quartzite. Most beds

olites occur throughout and are most

weather tan to buff. Beds of stromat-

numerous in upper part. Most stromat-

olites are in form of cabbage-heads or

mounds and are as large as 2-3 m in

forms beds as much as 15 m thick in upper part. Thick stromatolitic units

in upper part commonly form conspicu-

ous, massive ribs in otherwise thinly

is more thickly bedded, less argilla-

increasingly argillaceous near lower

contact. Crinkled texture called

is widely distributed throughout

Grinnell, and Appekunny Formations in

EMPIRE FORMATION (MIDDLE PROTEROZOIC) --

Mostly consists of green beds of

particularly in upper part, are

argillite and siltite. Many beds,

dolomitic, and some are calcareous and

stromatolitic. Carbonate beds weather

buff and are commonly interstratified

imparts a banded appearance. At most

places near middle part, formation

and siltite, each about 3 m thick,

beds of quartzite and calcarenite.

Formation is transitional between

overlying middle Belt carbonate and

underlying rocks of Ravalli Group. Widely distributed throughout

GRINNELL FORMATION (MIDDLE PROTEROZOIC) --

Consists of two contrasting

200 m thick

about 720 m

Proterozoic rock terrane; as much as

lithofacies--a highly quartzose facies

near southeastern part of mapped area

part. Quartzose facies is interlayered

sequence of red argillite and siltite,

characterized by mudcracks and inter-

crossbedded quartzite and sandstone.

Quartzite is typically coarse grained

and contains abundant red mud clasts.

Argillite facies contains small amount

of quartzite, mostly in upper half of

siltite. Widely distributed in western

part of Proterozoic terrane; thickness

green argillite beds and siltite beds--

siltite. Bedding thickness ranges from

formation, but is dominantly red,

APPEKUNNY FORMATION (MIDDLE PROTEROZOIC) --

Upper part consists of couplets of

about 1 mm to 5 cm; contains minor

amounts of light-gray quartzite in

Waterton River valley is mostly thin-

locality, near Anaconda Creek in south-

central part of mapped area, consists

of thin-bedded, green, dark-greenish-

gray, and tannish-gray argillite and

siltite. Middle part contains lime-

stromatolitic zones as thick as

stone and calcareous siltite beds and

0.7 m. Stromatolitic beds are discon-

above base of member. Siltite beds in middle part locally contain calcareous

possibly of algal origin. Lower part contains sequences of dark-gray, rusty,

Prichard(?) Formation. North of type

tinuous and occur locally 120-170 m

pods elongate parallel to bedding,

laminated argillite and siltite,

locality, Wolfgun Member contains

decreasing amounts of carbonate minerals; near Long Bow Lake, it

contains very minor amounts of carbonate. Thickness 365 m at type

similar to beds in underlying

bedded, green to gray argillite and

lenticular beds a few centimeters

thick. Formation in vicinity of

siltite and is not subdivided

Wolfgun Member--Upper part at type

argillite is more abundant than

purple, and green argillite and

stratified with abundant, white,

and an argillitic facies in northern

with green argillite and siltite, which

contains two sequences of red argillite

which are separated by green argillite

and siltite. Locally contains thin

about 720 m thick

molar-tooth structure is common on

eastern part of mapped area and is

weathered outcrops. Helena Formation

Ravalli Group

mapped area and is as much as 1,485 m thick

The Ravalli Group includes the Empire,

thin bedded, and unit becomes

bedded sequence of rocks. Middle part

ceous, and forms cliffs. Lower part is

diameter. A stromatolite form called

conophyton, unique to Helena Formation,

bedded green and pinkish-red argillite,

siltite, and quartzite. Green beds are

much as 120 m thick. Middle part

matolitic. Pillow basalt member in

CORRELATION OF MAP UNITS

Missoula

Group

Supergroup

DESCRIPTION OF MAP UNITS

ALLUVIUM (HOLOCENE) -- Silt, sand, and gravel

of the Flathead River. Includes

in streams tributary to the North Fork

channel, overbank, terrace, and some

colluvial deposits. Clasts composed

ALLUVIUM (HOLOCENE) -- Silt, sand, and gravel

along the North Fork of the Flathead

River. Includes channel and overbank

deposits in floodplain. Clasts pre-

dominantly of Belt Supergroup rocks,

but clasts of other lithologies are

shaped deposits of fluvial silt, sand,

and gravel; clasts commonly rounded and

predominantly of Belt Supergroup rocks.

terraces 5-30 m above the North Fork of

deposits within older glacial deposits.

Movement primarily by rotational shear

the landslides have well-defined scarps

in headward region. Ponds or bogs are

Largest landslides are thicker than 50 m

along a basal-slip surface. Many of

locally present in the toe region.

ABLATION TILL (UPPER PLEISTOCENE) --

probably greater than 30 m

ranges from 10 m to 30 m

and cover several square kilometers

Unsorted, subrounded clasts of Belt

Supergroup rocks that range from clay

drained, hummocky deposits that contain

ponds and bogs at the mouths of several

valleys along the western flank of the

Livingston Range. Maximum thickness is

that ranges from clay size to boulders.

southeast along North Fork of Flathead

Clasts are commonly subrounded rocks

TILL (UPPER PLEISTOCENE) -- Unsorted material

from the Belt Supergroup. Unit

deposited by ice lobe that flowed

River valley. Thickness commonly

MELTWATER CHANNEL DEPOSITS (UPPER PLEISTO-

CENE) -- Fluvial silt, sand, and gravel

deposited in channels by meltwater of

retreating glaciers that filled North

mostly on broad divides between major

drainages on the western side of the

Livingston Range. In many places,

KISHENEHN FORMATION OF DALY, 1912 (TER-

TIARY) -- Consists of two informal

members that are undifferentiated on

Kintla Creek Member in Canada, is as

much as 3,000 m thick and consists of

siltstone interstratified with silver-

gray to gray, calcareous sandy pebble-

cobble conglomerate and conglomeratic

sandstone. Contains minor amounts of

lignite and light-gray marlstone.

Lower member consists of a hetero-

geneous assemblage of fine-grained,

gray rocks, and is as much as 3,000-

4,000 m thick. Contains sandstone,

oil shale, and marlstone. Lignite

siltstone, montmorillonitic mudstone-

claystone, sandy pebble conglomerate,

seams, some as much as 0.7 m thick, are

common. Crops out in the western part

of mapped area along and near North

Fork of Flathead River. 200-7,000 m

DIORITIC INTRUSIVE ROCKS (LATE PROTERO-

ZOIC) -- Mostly diorite and quartz

diorite in sills as thick as 80 m.

Intrudes metasedimentary rocks of

area have not been dated; however,

Marshall Wilderness south of Glacier

sills of similar character in Bob

methods by J. D. Obradovich (oral

commun., 1966) as 750±25 m.y. old

BELT SUPERGROUP

of lower to upper parts of Belt Supergroup

area. Belt Supergroup in the northwestern

part of Glacier Park is as much as 3,800 m

Missoula Group

Group crop out in northern, eastern, and

as much as 1,450 m thick. Upper part of

Missoula Group is absent due to erosion

MOUNT SHIELDS FORMATION (MIDDLE PROTERO-

Middle part consists mostly of greenish-gray to buff, thin-bedded

part consists of red argillite,

Mountain

ZOIC) -- Upper part mostly very thin bedded red argillite and siltite.

dolomitic argillite and siltite. Lower

siltite, and quartzite. Also includes beds about 1 m thick of creamy-buff limestone, stromatolitic in part. Dark-gray, amygdaloidal, subaerial

basalt member about 10 m thick (shown as Yb, on map) occurs in lower 26 m of formation in northwestern part of mapped area. Nearly complete section of formation is exposed near Campbell Mountain in northeastern part of mapped area. About 600 m thick near Campbell

southeastern parts of mapped area and are

Lower three formations of Missoula

are widely distributed throughout mapped

middle and upper parts of Belt Super-

group in mapped area. Sills in mapped

Park have been dated by potassium-argon

Metasedimentary and metavolcanic rocks

red-, brown-, and gray-variegated

calcareous claystone, mudstone, and

the map. Upper member, also called the

Fork of Flathead River valley. Unit is

deposits are overlain by 1 m to 3 m of

size to boulders. Unit forms poorly

ALLUVIAL-FAN DEPOSITS (HOLOCENE) -- Fan-

Unit may include some debris-flow

Silt, sand, and gravel in stream

nantly of Belt Supergroup rocks.

LANDSLIDE DEPOSITS (HOLOCENE AND PLEISTO-

CENE) -- Predominantly large slump

Thickness ranges from 2-10 m

TERRACE GRAVELS (HOLOCENE AND PLEISTOCENE) --

the Flathead River. Clasts predomi-

deposits

entirely of Belt Supergroup rocks

Pleistocene

Eocene

QUATERNARY

PROTEROZOIC

Rocks in the northwestern part of Glacier National Park range in age from Middle Proterozoic to Tertiary. Large areas, particularly in the western part of the mapped area, are covered by unconsolidated Quaternary-age deposits, mostly of glacial origin. The Proterozoic rocks, which are exposed in the eastern half of the mapped area, are folded and are displaced by northwest-striking thrust and normal faults. The metasedimentary and mafic extrusive rocks (Middle Proterozoic age) are locally intruded by sills of dioritic composition which are inferred to be of Late Proterozoic age. Sedimentary rocks of Tertiary age crop out near the western boundary of the park. The Proterozoic rocks strike northwest and dip gently to moderately southwest and northeast. They are part of the allochthon formed by the Lewis thrust fault, which underlies the mapped area at depth and surfaces about 20 km east of the mapped area. Thrust faults, synclines, and anticlines that deform the Proterozoic rocks are closely related to movement on the Lewis thrust fault. Southwest-dipping normal faults that trend northwesterly in the central and western parts of the area postdate the Lewis thrust. Rocks along these faults are downdropped to the west; the largest of these, the Flathead fault, shows more than 4,000 m displacement. The Flathead fault controlled the eastern margin of the Tertiary basin, which is now filled with lacustrine and fluvial sedimentary rocks. Recurrent rotational movement on the Flathead fault tilted the Tertiary rocks eastward.

----- CONTACT--Long-dashed where inferred; dotted

During the Pleistocene this region was exten-

sively glaciated. The last major glacial episode

culminated about 20,000 years ago. At that time the

valley of the North Fork of the Flathead River lay

under more than a thousand meters of ice flowing to

the south. Valleys draining west from the Livingston

Range were filled by valley glaciers tributary to the

larger glacier occupying the Flathead River valley.

where concealed NORMAL FAULT-Ball and bar on downthrown side; dashed where inferred, dotted where concealed

THRUST FAULT--Sawteeth on upper plate; dashed where inferred, dotted where

concealed

+-+- SILL OR DIKE VOLCANIC FLOW

ANTICLINE--Dashed where inferred

OVERTURNED ANTICLINE

SYNCLINE--Dashed where inferred

- MONOCLINE STRIKE AND DIP OF BEDS

Inclined

Overturned

---- PARK BOUNDARY

REFERENCES CITED

Daly, R. A., 1912, Geology of the North American Cordillera at the forty-minth parallel: Canada Geological Survey Memoir 38, pt. 1, 546 p. Wilmarth, M. G., 1938, Lexicon of geologic names of the United States (including Alaska): U.S. Geological Survey Bulletin 896, pt. 2, M-Z, p. 1245-2396.

locality; thins to about 150 m near Long Bow Lake in northern part of mapped area

Robert L. Earhart, Omer B. Raup, Jon J. Connor, Paul E. Carrara, Debra H. McGimsey, Kurt N. Constenius, and Richard E. Van Loenen

1983

3 1818 00362465

INTERIOR—GEOLOGICAL SURVEY, RESTON, VIRGINIA—1983 For sale by Branch of Distribution, U.S. Geological Survey,

Box 25286, Federal Center, Denver, CO 80225